Skip to main content
Log in

Taste receptor T1R3 is an essential molecule for the cellular recognition of the disaccharide trehalose

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Recently, a sweet taste receptor family, the T1R family, that recognizes some carbohydrates including sucrose was identified. Although the T1R3 molecule is known to participate in heterodimers that are used as sweet- and umamitasting receptors, there is no evidence that T1R3 alone recognizes similar ligands. We demonstrate for the first time that the candidate sweet taste receptor T1R3 is essential for the recognition and response to the disaccharide trehalose. Our system is a valuable tool not only for understanding the relationship between sweeteners and their receptors but also for exploring the diversities of their receptors, resulting in the design of new high-potency sweeteners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai, C.; Kohguchi, M.; Akamatsu, S., et al. Trehalose suppresses lipopolysaccharide-induced osteoclastogenesis in mouse bone marrows. Nutr. Res. 21:993–999; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ariyasu, T.; Arai, C.; Yoshizane, C., et al. Trehalose augments osteoprotegerin production in the FHs74Int human intestinal epithelial cell line. In Vitro Cell. Dev. Biol. 38A:30–34; 2002.

    Article  Google Scholar 

  • Baker, E. K.; Colley, N. J.; Zuker, C. S.. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J. 13:4886–4895; 1994.

    PubMed  CAS  Google Scholar 

  • Capeless, C. G.; Whitney, G.. The genetic basis of preference for sweet substances among inbred strains of mice: preference ratio phenotypes and the alleles of the Sac and dpa loci. Chem. Senses 20:291–298; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Chandrashekar, J.; Mueller, K. L.; Hoon, M. A., et al. T2Rs function as bitter taste receptors. Cell 100:703–711; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Clapham, D. E.. Calcium signaling. Cell 80:259–268; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Colaco, C.; Sen, S.; Thangavelu, M., et al. Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Bio/Technology 10:1007–1011; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Draber, P.; Fraberova, E.; Novakova, M. Stability of monoclonal IgM antibodies freeze-dried in the presence of trehalose. J. Immunol. Methods 181:37–43; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer, N. D.; Troemel, E. R.; Sengupta, P., et al. Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell 93:455–466; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Elbein, A. D.. The metabolism of α,α-trehalose. In: Tipson, R. S.; Horton, D., ed. Advances in carbohydrate chemistry and biochemistry. Vol. 30. New York: Academic Press; 1974:227–256.

    Google Scholar 

  • Eroglu, A.; Russo, M. J.; Bieganski, R., et al. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotechnol. 18:163–167; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Firestein, S. How the olfactory system makes sense of scents. Nature 413:211–218; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, J. L. Single-locus control of saccharin preference in mice. J. Hered. 65:33–36; 1974.

    PubMed  CAS  Google Scholar 

  • Guo, N.; Puhlev, I.; Brown, D. R., et al. Trehalose expression confers desiccation tolerance on human cells. Nat. Biotechnol. 18:168–171; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Harkins, A. B.; Kurebayashi, N.; Baylor, S. M.. Resting myoplasmic free calcium in frog skeletal muscle fibers estimated with fluo-3. Biophys. J. 65:865–881; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Ishimoto, H.; Matsumoto, A.; Tanimura, T. Molecular identification of a taste receptor gene for trehalose in Drosophila. Science 289:116–119; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kerper, L. E.; Hinkle, P. M. Cellular uptake of lead is activated by depletion of intracellular calcium stores. J. Biol. Chem. 272:8346–8352; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa, M.; Kusakabe, Y.; Miura, H., et al.. Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem. Biophys. Res. Commun. 283:236–242; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Krautwurst, D.; Yau, K.-W.; Reed, R. R.. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95:917–926; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Li, X.; Staszewski, L.; Xu, H., et al. Human receptors for sweet and umami taste. Proc. Natl. Acad. Sci. USA 99:4692–4696; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lindemann, B. Receptors and transduction in taste. Nature 413:219–225; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lush, I. E.. The genetics of tasting in mice VI. Saccharin, acesulfame, dulcin and sucrose. Genet. Res. 53:95–99; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Max, M.; Shanker, Y. G.; Huang, L., et al. Tas1r3, encoding a new candidate receptor, is allelic to the sweet responsiveness locus Sac. Nat. Genet. 28:58–63; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Minta, A.; Kao, J. P. Y.; Tsien, R. Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264:8171–8178; 1989.

    PubMed  CAS  Google Scholar 

  • Mody, S. M.; Ho, M. K.; Joshi, S. A., et al. Incorporation of GαZ-specific sequence at the carboxyl terminus increases the promiscuity of Gα16 toward Gi-coupled receptors. Mol. Pharmacol. 57:13–23; 2000.

    PubMed  CAS  Google Scholar 

  • Montmayeur, J.-P.; Liberles, S. D.; Matsunami, H., et al. A candidate taste receptor gene near a sweet taste locus. Nat. Neurosci. 4:492–498; 2000.

    Google Scholar 

  • Nelson, G.; Chandrashekar, J.; Hoon, M. A., et al. An amino-acid taste receptor. Nature 416:199–202; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, G.; Hoon, M. A.; Chandrashekar, J., et al. Mammalian sweet taste receptors. Cell 106:381–390; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Nishizaki, Y.; Yoshizane, C.; Toshimori, Y., et al. Disaccharide-trehalose inhibits bone resorption in ovariectomized mice. Nutr. Res. 20:653–664; 2000.

    Article  CAS  Google Scholar 

  • Offermanns, S.; Simon, M. I. Gα15 and Gα16 couple a wide variety of receptors to phospholipase C. J. Biol. Chem. 270:15175–15180; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Portmann, M.-O.; Birch, G.. Sweet taste and solution properties of α,α-trehalose. J. Sci. Food Agric. 69:275–281; 1995.

    Article  CAS  Google Scholar 

  • Sainz, E.; Korley, J. N.; Battey, J. F., et al. Identification of a novel member of the T1R family of putative taste receptors. J. Neurochem. 77:896–903; 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Ariyasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariyasu, T., Matsumoto, S., Kyono, F. et al. Taste receptor T1R3 is an essential molecule for the cellular recognition of the disaccharide trehalose. In Vitro Cell.Dev.Biol.-Animal 39, 80–88 (2003). https://doi.org/10.1290/1543-706X(2003)039<0080:TRTIAE>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2003)039<0080:TRTIAE>2.0.CO;2

Key words

Navigation